筑波大学大学院博士課程

システム情報工学研究科修士論文

利用者注意に基づく
能動的CGキャラクタの動作生成

益子 宗
（知能機能システム専攻）

指導教官 岩田洋夫 矢野博明 星野准一

2005年1月
概要

本稿ではインタラクティブドラマシステムでのCGキャラクタの志向動作を簡易に生成することを目的とし、CGキャラクタの発話情報と、利用者の注意情報からCGキャラクタの動作を自動的に生成する。ただし、CGキャラクタの発話情報にはあらかじめ用意されたCGキャラクタの音声データ、発話テキスト文を利用し、利用者の注意情報には利用者の志向の向き（頭部の向き）、発話の大きさ、動作箇所をリアルタイムで検出し利用する。

従来の音声認識を用いたインタラクティブドラマシステム[1]において、CGキャラクタの動作の生成は、利用者の発話に応じたあらかじめ作成された単純なモーションを再生することと行なわれていた。しかし、従来システムでは利用者の発話による言語情報のみを扱っており、実際の会話において重要な役割を果たしているとされている、利用者の視線やジェスチャといった視覚的非言語動作[2]を十分にCGキャラクタに反映させることができなかった。そのため、従来の手法では、利用者の発話中にあらかじめの方向を向くなど、利用者の状態を無視したCGキャラクタの動作生成が行なわれ、利用者のインタラクティブドラマ環境への没入感を高めることの不十分であった。

そのため、本稿ではインタラクティブドラマにおけるCGキャラクタの、対話者の注意状態が影響しやすいとされている視線移動や指示動作などの志向動作を、利用者注意を用いて簡易に生成する手法を提案し、インタラクティブドラマ環境への没入感を高めることを行なう。

本手法ではCGキャラクタの志向方向を胴体の回転角と視線方向の和、視線方向を頭部と眼球の回転の和と定義し、志向方向によって胴体と頭部、眼球の回転の割合を動的に変える動的分担機構を提案し、CGキャラクタの志向の移動をパラメータによって制御する。同時に任意方向を指示することもできる。このようにCGキャラクタの志向の移動をパラメータにより簡易に生成できるモデルを利用することで、柔軟に利用者の注意状態を反映させることが可能となる。

また、実際の会話では聴取時に相手の発話に対して、あいづちをうつなど、会話の状態によって生成される動作が異なる。そこで本手法では、CGキャラクタと利用者の発話の有無により、発話状態、聴取状態、話者間に発話が無い待機状態の3つの状態に分類し、志向動作生成モジュールが会話状態を参照する。これにより、発話時に相手を向くことや発話者を向くことなどの、会話状態に連動した志向動作を生成することが可能となる。ただし、対話において、複数の話者が同時に話すといったオーバーラップが発生した場合、発話者は相手の発話の有無に関係なく発話状態に遷移するものとする。

このように利用者の発話状態、注意状態を取得しCGキャラクタに反映させることで、あたかもCGキャラクタが利用者の状態を察知し、能動的に動作しているような振る舞いをさせることが可能となり、インタラクティブドラマ環境への利用者の没入感を高めることができる。
目次

第 1 章 はじめに ... 1
第 2 章 関連研究 ... 4
第 3 章 志向の移動における動的分担機構 ... 6
 3.1 視線方向と胴体の分担 ... 6
 3.1.1 志向方向による分担比 ... 6
 3.1.2 志向の移動における頭部・胴体の遷移モデル .. 7
 3.2 頭部と眼球の分担 ... 8
 3.2.1 前庭動眼反射 .. 8
 3.2.2 頭部と眼球の分担 ... 9
 3.2.3 視線移動における頭部・眼球の遷移モデル .. 10
 3.2.4 視線移動における頭部・眼球の時間特性 ... 11
第 4 章 指差し動作における動的分担機構 ... 13
 4.1 指示方位と指示ベクトル .. 13
 4.2 指示方位による胴体と上肢の分担 .. 14
 4.3 逆運動学による上肢の回転 ... 15
 4.4 キー姿勢の補間 .. 17
第 5 章 利用者の注意状態の取得 ... 18
 5.1 利用者の視線方向の検出 .. 18
 5.1.1 利用者の注視位置の推定 ... 19
 5.1.2 指示語と注意対象の関係 .. 20
 5.1.3 利用者の注目状態の解釈 ... 21
 5.2 利用者の動作箇所の特定 .. 21
第 6 章 C G キャラクタの能動的動作の生成 .. 23
 6.1 頭部動作の生成 .. 23
 6.1.1 発話状態における頭部の動き ... 23
 6.1.2 聴取状態における頭部の動き ... 24
 6.1.3 頭部動作の表出度 ... 24
 6.2 能動的な志向の移動の生成 ... 25
 6.2.1 発話状態における眼球の動き ... 25
 6.2.2 凝視・非凝視動作 ... 25
 6.2.3 手話状態に連動した凝視・非凝視動作 .. 26
 6.3 インタラクティブな志向の移動 .. 27
 6.3.1 利用者の注意位置による志向の制御 ... 27
 6.3.2 動作箇所への注目 ... 28
 6.3.3 発話の大小による反応 .. 28
第 7 章 評価実験 ... 29
 7.1 志向の移動モデルの検証 ... 29
7.1.1 対話アニメーションの生成...29
7.1.2 複数人対話の生成...32
7.2 能動的志向動作の生成..34
 7.2.1 インタラクティブドラマへの適用..34
 7.2.2 複数人対話の生成...35
第 8 章 まとめ..38
謝辞...39
参考文献..40
図目次

図 1-1 インタラクティブドラマシステム .. 2
図 1-2 利用者注意に基づく志向動作の生成の概要 .. 2
図 1-3 志向方向の胴体・頭部・眼球回転への分担 .. 3
図 3-1 志向方向による視線方位と胴体の回転の分担 .. 7
図 3-2 頭部と眼球の回転角の定義 .. 8
図 3-3 頭部動作による視線の変化 .. 9
図 3-4 視線方向による頭部・眼球の回転角の分担比 ... 10
図 3-5 視線移動における頭部と眼球の位置モデル ... 11
図 4-1 指示方位による上肢と胴体の回転の分担比 ... 15
図 4-2 指示ベクトルの制御 .. 17
図 5-1 利用者の注意位置の推定 .. 20
図 5-2 動作箇所の特定(1) .. 22
図 5-3 動作箇所の特定(2) .. 22
図 6-1 うなずきの生成 ... 24
図 6-2 凝視・非凝視動作 ... 26
図 6-3 動作箇所の検出による志向動作の動的変更 ... 28
図 7-1 2人対話の評価実験用の会話文 .. 30
図 7-2 アンケート用紙 ... 30
図 7-3 アンケート結果 ... 31
図 7-4 頭部と眼球の回転角度（映像③，女性） ... 31
図 7-5 会話と頭部動作 ... 31
図 7-6 実験結果（映像②，男性の視点） ... 32
図 7-7 実験結果（映像③，男性の視点） ... 32
図 7-8 実験結果（映像④） .. 32
図 7-9 複数人対話の評価実験用の会話文 ... 33
図 7-10 複数人対話（左側男性の視点） .. 33
図 7-11 複数人対話（右側男性の視点） .. 33
図 7-12 複数人対話 ... 33
図 7-13 インタラクティブドラマ用の会話文 ... 34
図 7-14 インタラクティブドラマにおける実験結果 .. 34
図 7-15 利用者を含む複数人対話の会話文 ... 36
図 7-16 複数人対話における実験結果 .. 36
表目次

表 6-1 会話状態による能動的動作…………………………………………………………23
表 6-2 表象的動作を伴う単語……………………………………………………………23
表 6-3 視線パラメータの動的設定………………………………………………………27
第1章 はじめに

近年、CGで作成されたキャラクタはインタラクティブドラマやTVゲームといった様々な対話型のメディアで利用されている。これらのCGキャラクタは、説明対象を指示することや、利用者に視線を向けるなど、利用者との対話において多様な動作を行う。しかし、これらの動作は、動作軌道や時間的なタイミングが利用者から見ても自然に見えるようにクリエイタによって作り込まれたものであることが多く、非常に時間のかかる作業を伴う。そのためクリエイタが製作するような表現力のある、動作の自動的な生成方法が望まれている。特に眼球や頭部動作・指示動作といったCGキャラクタの志向や意思を表現する動作（以下、志向動作とする）は、CGキャラクタが何に対して注意を払っているのかを推測する手がかりとなるため、インタラクティブ環境において簡単に動作を生成するモデルが必要とされている。

従来からそのようなCGキャラクタの志向動作を簡易に生成するために、モーションキャプチャによる実測値を利用した眼球動作のモデル化や3,会話中の音声を利用した頭部ジェスチャの生成などが行われている4。しかし、それらは眼球動作や頭部動作を自動的に生成することに主眼がおかれていたため、インタラクティブによる任意の対象に志向を向けるといった動作を生成することが困難であった。

また、実際の会話の中で伝えられる情報として、発話による言語情報のほかに、視線や頭部動作といった視覚的非言語動作が非常に重要な役割を果たしているとされている2。特に非言語情報の中でも視線の方向や顔の向きなどの志向動作は、その行動主体が何に対して注意を払っているのかを推測する手がかりとなるため従来から心理学分野での研究が盛に行われ、CGキャラクタにそれらの機能を実装することも行われている5,6,7。しかし、従来の研究ではCGキャラクタの非言語動作の生成のみに注目していたために、利用者の非言語動作の利用に関する研究があまりされていなかった。

そこで本稿では、音声認識を用いたインタラクティブドラマシステム（図1-1）において、利用者の非言語情報を取得し、CGキャラクタの動作に反映させることで、利用者との対話に連動したCGキャラクタの志向動作をインタラクティブに生成する手法を提案し、利用者のインタラクティブドラマシステムへの没入感を高めることを目的とする。（図1-2）

はじめに、本手法ではCGキャラクタの志向方向を胴体の回転角と視線方向の和、視線方向を頭部と眼球の回転の和と定義し（図1-3）、志向方向によって胴体と頭部、眼球の回転の割合を制動的に変更する動的分担機構を提案し、CGキャラクタの志向の移動をパラメータによって制御する。同時に任意方向を指示する動作生成についても触れる。このようにCGキャラクタの志向の移動をパラメータにより簡易に生成できるモデルを利用することで、柔軟に利用者注意を反映させることが可能となる。次に、利用者の視線方向やジェスチャ（以下、注意動作とする）や発話の有無（以下、会話状態とする）といった利用者の注意情報を考慮してインタラクティブに能動的な志向動作を生成する手法を提案する。

本手法では、あらかじめ用意されたCGキャラクタの音声・発話テキストを利用してインタラクティブにCGキャラクタの会話アニメーションを生成し、利用者の注意動作に基づいてインタラクティブドラマシステム（図1-1）において、利用者の非言語情報を取得し、CGキャラクタの動作に反映させることで、利用者との対話に連動したCGキャラクタの志向動作をインタラクティブに生成する手法を提案し、利用者のインタラクティブドラマシステムへの没入感を高めることを目的とする。（図1-2）
テープに動作を修正する。さらに、C Gキャラクターの志向動作を生成するモジュールが話者間の会話状態を考慮することによって、会話を連動した動作を生成する。

このように利用者の注意状態を取得しC Gキャラクタに反映させることで、あたかもC Gキャラクタが利用者の状態を察知し、能動的に動作しているような振る舞いをさせることができる。インタラクティブドラマ環境への没入感を高めることができる。

図 1-1 インタラクティブドラマシステム

図 1-2 利用者注意に基づく志向動作の生成の概要
図 1-3 志向方向の胴体・頭部・眼球回転への分担
第2章 関連研究

例えば、視線は会話の円滑化を促進する機能があるとされ[10]、相手を見つめる時間の割合や、視線の位置によって相手に与える印象が変化することや[11][12][13]、外向的な人は内向的な人に比べ凝視する頻度が高いこと[14]、好意の印象に凝視量と発言の親和性の交互作用がみられることなどが知られている[15]。また、顔や首の振る等の動作からは意図を読み取ることができることも知られている[16]。さらに、[17]では面接試験における顔の効果を調べ、うなずくこととは話し手の会話に促進させる効果をもっていることを示している。

近年、より自然なアニメーションを生成するためにそのような機能をCGキャラクタに応用する研究が行われるようになっている。[5]では、非言語表現をタスクや情報の内容に応じて適切にエージェントに表出させることを実現している。頭部の動きに関しては、アバタの頭部動作を意図的に止めることで、利用者とアバタとの対応関係に不具合が生じ、円滑なコミュニケーションができなくなることが示されている[9]。

また、視線による会話調整機能に関して、Vertegaal らは複数人対話において視線から話者とその話しかけている対相を認識する研究を行なっている[6][7]。[3]では、実際の会話中における人物の眼球動作の計測結果から、発話状態と聴取状態の2つの会話状態における統計的モデルをそれぞれ作成し、眼球動作を生成している。これらの従来研究から実際の人間に近い頭部・眼球動作をさせることが可能であることがある。しかし、特定の方向を向く場合、人間の胴体、頭部、眼球は同時に動くなど依存関係が強く、従来の頭部動作や眼球動作を独立に扱うモデルでは十分な表現が困難である。また、対話者の非言語動作の間に様々な相互依存関係が存在することが指摘されている[11][20]。会話状態も考慮した動作生成が必要である。そのため本稿では、志向動作における胴体、頭部、眼球の動作の依存関係や、会話の状態を考慮した志向動作の生成手法を提案する。

また、実際の会話の中で伝達される情報として、発話による言語情報のほかに、視線や頭部動作といった視覚的非言語情報が非常に重要な役割を果たしている[2]。特に非言語情報の中でも視線の方向や顔の向きなどの志向動作は、その行動主体が何に対して注意を払っているのかを推測する手がかりとなるため従来から心理学分野での研究が盛んに行われ、CGキャラクタにそれらの機能を実装することも行われている[5][6][7]。しかし、従来の研究ではCGキャラクタの非言語動作の生成のみに注目していたために、利用者の非言語動作の利用に関する研究があまりなされておらず、利用者のインタラクティブドラマ環境
への没入感を十分に実現することが困難であった。
そこで本稿では、利用者の非言語情報を取得しCGキャラクタの動作に反映させ、利用者との対話に連動したCGキャラクタの志向動作をインタラクティブに生成する手法を提案する。
第3章 志向の移動における動的分担機構

本章では、志向方向を頭部と眼球、胴体の回転角の和とし、志向方向によって胴体と頭部、
眼球の回転の割合を動的に変更する動的分担機構をモデル化し、頭部と眼球、胴体の複合的
な志向動作を生成する。はじめに、志向方向による頭部と胴体の分担について述べ、次に視
線方向を頭部と眼球の回転とで分担する機構について述べる。なお、本稿では、正面を向い
た場合の角度を0°とし、左を向く角度を正、右を向く角度を負の値で表現する。

3.1 視線方向と胴体の分担

3.1.1 志向方向による分担比

人間の骨格の構造上、胴体の回転角の最大値は左右70°、頭部の回転角の最大値は左右
80°、眼球の回転角の最大値は内側に30°、外側に50°[21]の可動域もっており、一定以
上の方位を向く場合は頭部・眼球の回転だけではなく胴体の回転を伴った回転動作が行なわ
れている。また、一定の角度を超えると志向を向けやすい場所へ立ち位置を移動することも
行なわれる。

そこで、視線移動における胴体と頭部の関係、立ち位置の関係を調査するために、視線移
動における各部位の回転角の実測データを考察した。その結果、
1）左右ともに注視対象が水平角130°を超える視線移動時には、より見やすい位置へ
立ち位置を変更する。
2）左右ともに注視対象が水平角50°を超える視線移動時には胴体の回転を伴い、水平
角130°では頭部と胴体の回転角はほぼ等しい。
3）垂直角方向の視線移動には胴体による回転はほぼ見られない。
4）立ち位置の変更は右側（負の角度）を向く場合右回転、左側（正の角度）を向く場
合は左回転となる。

このようなことが分かった。以上の考察の結果から、50° ≤ |Os| の場合は頭部と眼球の回転
のみで指標を捉え、それ以上の角度を注視する場合は胴体の回転を伴うものと仮定する（図
3-1）。また 130° ≤ |Os| の場合は、より見やすい位置へ立ち位置を変更するものとする。
Os、Ot をそれぞれ志向の向きの水平角成分、垂直角成分とし、胴体と視線方向の志向方向に
よる回転の割合を分担比 D とし、以下の式で定義する。

\[
\begin{bmatrix}
O_x \\
O_y
\end{bmatrix} = \begin{bmatrix}
Vx_{ro} + Bx_{ro} \\
Vy_{ro} + By_{ro}
\end{bmatrix}
\] (1)
立ち位置の変更

$$D_x = \begin{cases} 1.0 - \frac{0.5 \cdot |O_x| - 50}{80} & (|O_x| \leq 50) \\ \text{立ち位置の変更} & (50 < |O_x| < 130) \\ 1 & (130 \leq |O_x|) \end{cases}$$ \hspace{1cm} (2)$$

$$D_y = 1$$ \hspace{1cm} (3)

$$\begin{bmatrix} V_{x_{to}} & V_{y_{to}} \\ B_{x_{to}} & B_{y_{to}} \end{bmatrix} = \begin{bmatrix} 1 - \alpha \cdot D_x & 1 - \alpha \cdot D_y \\ \alpha \cdot D_x & \alpha \cdot D_y \end{bmatrix} \begin{bmatrix} O_x & 0 \\ 0 & O_y \end{bmatrix}$$ \hspace{1cm} (4)

ただし，$$O_x, O_y$$ はそれぞれ視線の向きの水平角成分，垂直角成分，$$D_x, D_y$$ はそれぞれ胴体・頭部水平方向，垂直方向の分担比を示し，$$V_{x_{to}}, V_{y_{to}}$$ はそれぞれ視線移動時の水平方向，垂直方向の視線方向（頭部回転角と眼球回転角の和），同様に $$B_{x_{to}}, B_{y_{to}}$$ は胴体の回転角とする．また，分担比は個人や年齢によって差が大きいため，本稿では重み$$\alpha$$ により調整する．

図 3-1 志向方向による視線方位と胴体の回転の分担

3.1.2 志向の移動における頭部・胴体の遷移モデル

本稿では志向の移動に関する胴体と頭部の回転動作をモデル化するために，典型的な志向移動[21]を参考にし，図 3-2 に示す視線移動における頭部・胴体の遷移モデルを定義する．図 x x は志向角度を変化させた時の，志向方向 $$O(t)$$ と頭部の回転 $$H(t)$$，胴体の回転 $$B(t)$$ の関係を示している．このモデルは以下の 2 つのステップからなる．

1) 頭部の重量は胴体の重さよりも軽いため，頭部が先に動き出す．
2) 頭部の最大角度に達した後，または頭部の回転開始の若干後に胴体の回転角が発生する．

ステップ 1) の頭部回転は，角速度をシグモイド状に変化しながら頭部を移動させることができる分かっているため[22][23]，本稿では頭部回転の角速度はシグモイド状に変化させる．同様に胴体の回転もシグモイド状に変化させる．

ただし，$$T_0$$ は志向を向けるまでの所要時間（ステップ 1）+ ステップ 2）を表す．$$T_0$$ は個人の反射能力，志向移動の緊急性などの外的要因が関係すると考えられるため，本章では簡略化し，注視座標の角度にかかわらず一定時間を要するものとした．また，視線移動開始時から $$T_0$$ 後の時点の視線角度（頭部と眼球の回転角の和）と胴体回転角の比を分担比とす
3.2 頭部と眼球の分担

3.2.1 前庭動眼反射

眼球で対象となる静止目標を注視しながら頭部を回転させる場合, 同時に 2 つの回転が生じる. 1 つめは環境に対する頭部の回転で, 2 つめは目標を見続けるために生じる眼球の回転である. そのため, 3 章で述べた頭部動作のみを仮想俳優に適用した場合, 頭部動作に連動した眼球の回転が発生しないため, 視線を空間内の一定位置に保つことができない.

そこで本稿では, 頭部動作と眼球動作の依存動作である, 前庭動眼反射(Vestibulo-ocular reflex: VOR)を考慮する[24]. 前庭動眼反射は, 頭部が回転した場合に, 眼球が反射的に頭部の回転方向と反対方向に動くという現象である. 正確な前庭動眼反射は頭部のロール回転や頭部と眼球の中心位置の違いを考慮する必要があるが, 本稿では誤差の範囲内とし, 簡略化のために以下の式により前庭動眼反射を定義する. また, 本稿では図 3-2 に示すように, 頭部と眼球の回転角を定義する.

\[
\begin{bmatrix}
\dot{H}_{\text{pitch}} \\
\dot{H}_{\text{yaw}} \\
\dot{E}_{\text{pitch}} \\
\dot{E}_{\text{yaw}}
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
H_{\text{pitch}} \\
H_{\text{yaw}}
\end{bmatrix}
\]

図 3-2 に前庭動眼反射を考慮した場合と, 考慮しない場合の頭部の動きの様子を示す. 図 3-3 より, 前庭動眼反射を考慮することで視線を一定に保つことができていることがわかる.

図 3-2 頭部と眼球の回転角の定義
① 前庭動眼反射を考慮しない場合

② 前庭動眼反射を考慮した場合

図 3-3 頭部動作による視線の変化

3.2.2 頭部と眼球の分担

視線方向は頭部の回転と眼球の回転の和によって近似することができ, 視線移動を行なう場合, 人間は頭部の回転を伴い視線の移動を行なう. 従来からこのような頭部と眼球の協調動作に関しての研究がなされている. ただし, 本章では志向を向けたい方位から胴体の回転角を引いた角度を視線方向としている.

例えば, 注視対象が 15°以内に位置する場合, 86%は眼球の動きのみによって指標をとらえることができることや[25], 15°から 30°の位置の注視対象は頭部の動きを伴うことで注視可能であることが明らかになっている[25][26][27]. また, 山田らは 30°を超える視線移動では, 20代の被験者の視線にしめる頭部回転の割合が, ほぼ 60〜70%の一定の比率になることを示している[28]. さらに, 3歳児の注視時における頭部の回転の割合は6歳, 9歳の子供よりも大きいことや[29], 年齢とともに頭部運動速度は低下するが逆に眼球運動速度が増加するため視線の速度は一定に保たれるなど[30], 視線角度にしめる頭部回転の割合は年齢や性別などの個性によって変化するものとされている.

そこで, 本稿ではこれらの知見を踏まえ, 30°≦|Vx|, 20°≦|Vy|の場合は頭部の回転のみで指標を捉えるものと仮定する（図 3-4）. Vx, Vy はそれぞれ視線の向きの水平角成分, 垂直角成分を表す. また, 特定方向に視線を動かす場合の眼球と頭部の回転の比率を分担比 D' とし, 以下の式で定義する.

\[
\begin{bmatrix}
V_x' \\
V_y'
\end{bmatrix} = \begin{bmatrix}
Hx_{rg} + Ex_{rg} \\
Hy_{rg} + Ey_{rg}
\end{bmatrix}
\] (6)
ただし、\(V_x' \), \(V_y' \)はそれぞれ視線の向きの水平角成分、垂直角成分、\(D_x' \), \(D_y' \)はそれぞれ頭部・眼球の水平方向、垂直方向の分担比を示し、\(Hx_{Tg} \), \(Hy_{Tg} \)はそれぞれ視線移動時の水平方向、垂直方向の頭部回転角、同様に \(Ex_{Tg} \), \(Ey_{Tg} \)は眼球の回転角とする。
また、分担比は個人や年齢によって差が大きいため、本稿では重み \(\beta \) により調整する。

\[
D_x = \begin{cases}
1 & (\| V_x' \| \leq 15) \\
\frac{30 - \| V_x' \|}{15} & (15 < \| V_x' \| < 30) \\
0 & (30 \leq \| V_x' \|)
\end{cases}
\]

(7)

\[
D_y = \begin{cases}
1 & (\| V_y' \| \leq 10) \\
\frac{20 - \| V_y' \|}{10} & (10 < \| V_y' \| < 20) \\
0 & (20 \leq \| V_y' \|)
\end{cases}
\]

(8)

\[
\begin{bmatrix} Hx_{Tg} & Hy_{Tg} \\ Ex_{Tg} & Ey_{Tg} \end{bmatrix} = \begin{bmatrix} 1 - \beta \cdot D_x' & 1 - \beta \cdot D_y' \\ \beta \cdot D_x' & \beta \cdot D_y' \end{bmatrix} \begin{bmatrix} V_x' & 0 \\ 0 & V_y' \end{bmatrix}
\]

(9)

3.2.3 視線移動における頭部・眼球の遷移モデル

本稿では視線移動に関する頭部と眼球の動作をモデル化するために、典型的な視線移動
[31]を参考にし、図3-5に示す視線移動における頭部・眼球の遷移モデルを定義する。図3-5は視線角度を変化させた時の、視線角V(t)と頭部回転H(t)、眼球回転E(t)の関係を示している。このモデルは以下の2つのステップからなる。

3）眼球の角速度は頭部の角速度よりも大きいため（\(\dot{E} \gg \dot{H} \)）、眼球が先に動き出し、\(S_d \)後に眼球の回転角が視線角\(V_{sd} \)に到達する。\(S_d \)はサッケードに要する時間（Saccade duration）であり、ステップ1の所要時間を示す。Beckerによると、サッケードの平均時間は20〜30msであることがわかっているため[32]。本稿では、30Frame/Secの再生環境のもとで、\(S_d \)は1frameとした。また、\(V_{sd} \)は目標とする視線角度とする。

4）頭部が回転を始める。頭部は分担比によって計算された角度（\(H_{xTg} \), \(H_{yTg} \)）になるまで回転し続ける。同時に入、頭部の回転に伴って3.2.1で述べた前庭動眼反射が発生し、眼球が逆方向に回転する。

ステップ1の素早い眼球の動きはサッケードと呼ばれ、人間では約400〜600(deg/s)といわれている[32]。ステップ2の頭部回転は、角速度をシグモイド状に変化しながら頭部を移動させることができ分かっているため[22][23]。本稿では頭部回転の角速度はシグモイド状に変化させる。ただし、\(T_e \)は視線を向けるまでの所要時間（ステップ1+ステップ2）を表す。\(T_e \)は個人の反射能力などの外的要因が関係すると考えられるため、本稿では簡略化し、注視座標の角度にかかわらず一定時間を要するものとした。また、視線移動開始時から\(T_e \)後の時点の頭部回転角と眼球回転角の比を分担比とする。

![図3-5 視線移動における頭部と眼球の遷移モデル](image)

3.2.4 視線移動における頭部・眼球の時間特性

3.2.1〜3.2.3で述べた依存関係を考慮した頭部と眼球の時間特性は以下の式で表される。
\[V(t) = H(t) + E(t) \] \hspace{1cm} (10)

\[H(t) = HeadMotion(t) + Sight(t) \] \hspace{1cm} (11)

\[E(t) = Saccade(t) + VOR(t) \] \hspace{1cm} (12)

\[VOR(t) = H(t) \] \hspace{1cm} (13)

\[Saccade(t) = \begin{cases}
 \frac{V - \theta_0}{S_d} t & 0 \leq t \leq S_d \\
 \frac{V - \theta_0}{S_d} S_d < t
\end{cases} \] \hspace{1cm} (14)

\[Sight(t) = H_0 + \begin{cases}
 0 & (0 \leq t \leq S_d) \\
 (H_{T_g} - H_0) \cdot \frac{(1+A)(B-C)}{(B-A)(1+C)} & (S_d \leq t \leq T_g)
\end{cases} \] \hspace{1cm} (15)

\[A = e^{S_d-T_g} \] \hspace{1cm} (16)

\[B = e^{T_g-S_d} \] \hspace{1cm} (17)

\[C = e^{-2t+S_d-T_g} \] \hspace{1cm} (18)

ただし，\(V(t) \)は視線角度 \(V_x, V_y \)の時間特性，\(H(t), E(t) \)はそれぞれ頭部，眼球の回転角度の時間特性，\(H_0 \)は視線移動開始時（\(t=0 \)）の頭部の回転角度（オフセット角度），\(H_{T_g} \)は時刻 \(T_g \)における，分担比によって求められた頭部回転角度とする．また，\(HeadMotion(t) \)は8章で述べる，頷く，首を横に振るといった頭部動作による時刻 \(t \)秒における頭部の回転角を表す．また，\(VOR(t) \)は3.2.1で述べた前庭動眼反射の時間特性，\(Saccade(t) \)は3.2.3で述べたステップ1）の時間特性，\(Sight(t) \)は3.2.3で述べたステップ2）のジグモイド状の頭部動作の時間特性を表す．ただし，\(S_d \leq t \leq T_g \)における\(Sight(t) \)は，ジグモイド関数

\[f(x) = \frac{1}{1 + e^{-x}} \] \hspace{1cm} (19)

の \(f(0) \)における傾きを0.25，\(f(-1) = 0, f(1) = 1 \)と調整することにより求めた．
第4章 触差し動作における動的分担機構

インタラクティブドラマシステムでは、利用者の質問に対してCGキャラクタが仮想空間内の物体を説明することや、方向を提示するような説明シーンが多く見られ、人間らしく説明をするCGキャラクタが望まれている。そのような説明対象や方位を提示するための指差し動作は、指示対象との位置関係によって動作が変形するため、従来の指差し動作のモーションを再生する手法では多様な位置関係での適切な指差し動作が困難であった。そのため本章では志向運動の一つとして指差し動作を取り上げ、CGキャラクタと指示対象との位置関係による指差し動作の制御モデルを提案し、指差し動作を簡易に生成する手法を提案する。

指差し動作の生成法として、あらかじめモーションキャプチャされた一連の動作データを適用することが考えられるが、キャプチャ元の人間と仮想俳優の体格が異なる場合、必ずしも適切な動作が得られるとは限らない。また、指示対象との位置関係ごとにモーションデータ用意する必要があり非常に手間のかかる作業である。

そこで、本稿では指差し時の上肢と胴体の回転角を4.1、4.2に示す手法により求め、開始姿勢と指差し時の姿勢、終了姿勢をキーフレーム法により補間することで、指差し動作を生成する。これにより、任意の位置・姿勢からの指差し動作生成が可能となる。

4.1 指示方位と指示ベクトル

指差しにより特定の指示対象を指示する場合、指差し時の姿勢から指示方位を求めることが必要となる。従来研究[33][34][35]により、指差し動作の基準となる指示基準点と指先を結ぶベクトル（以後、指示ベクトル）が指差しの方位を表すことがわかっている。しかし、指示者と指示対象間の距離が近づくにつれて指示基準点が胴体の左から右へ移動する[4]など、一意に指示基準点を決定することはできない。

そこで本稿では、指示基準点を肩のローカル座標の原点座標、指示動作点を前腕の先端の座標とし、指示基準点から指示動作点に向かうベクトルを指示ベクトルとする。ただし、指示対象は指示ベクトル上にあり、指差しは右手で行なうものとする。また、簡略化のために、指示方位は胴体と上肢の回転の和で表すものとする。

指示方位はCGキャラクタの正面方向と指示対象の位置を元に次式より求める。

\[
\theta_H = \cos^{-1} \left(\frac{V_F \cdot V_H}{|V_F||V_H|} \right) \tag{20}
\]

\[
\theta_V = \cos^{-1} \left(\frac{V_H \cdot V_T}{|V_H||V_T|} \right) \tag{21}
\]
ただし、θ_H, θ_V はそれぞれ指示方向の水平成分、垂直成分を表す。また、X_0, Y_0, Z_0 は指示基準点の 3 次元座標、xt, yt, zt は指示対象の 3 次元座標を示す。また、\vec{S} は C G キャラクタの右肩と左肩のローカル座標の原点を結ぶベクトルを示し、\vec{Y} は Y 軸方向のベクトルを示す。

4.2 指示方位による胴体と上肢の分担

志向の移動時と同様に指示動作を行なう場合、胴体と上肢とが適切に回転角の分担を行なっている。人間の骨格の構造上、上肢の回転のみで指示できる方位は限られており、一定の角度以上の方位を指し示す場合は、胴体の回転を伴って指差しが行なわれる。そこで指差し時に見られる上肢と胴体の回転の特徴を調査するために、指示動作のサンプル映像を考察した。その結果、
1) 指示対象が指示者の左にある時は、上肢とともに胴体が左に向かうように回転（Y 軸）する。
2) 指示対象が指示者の右にある時は、上肢のみが右に向かうように移動し、胴体に動きほどらか見えない。
3) 志向の移動時の胴体と視線方向の分担比とは異なる分担比が存在する。
4) 志向の移動と同様に、左右ともに指示対象が水平角 130° を超える指示動作時には、より指示をしやすい位置へ立ち位置を変更する。
5) 垂直方向の指示動作時には、胴体の回転（X 軸）は見られない。
という特徴が得られた。

そこで、本稿ではこれらの知見を踏まえ、-60° ≤ θ_H ≤ 30° の場合は上肢の回転のみで指示方位を指し、130° ≤ |θ_H| の場合は立ち位置を変更するものと仮定する。また、特定方向を指示する場合の上肢と胴体の回転角を、指示方位における上肢と胴体の回転の割合を表す分担比 D を用いて求める。ただし、本稿では指示方位の垂直成分は上肢の回転のみ、水平成分は上肢と胴体の回転の和とし、以下の式により求める(図 4-1)。なお本稿では、正面を向けた時の角度を 0° とし、左を向け角度を正、右を向け角度を負とする。

\[
\begin{bmatrix}
\theta_H \\
\theta_V
\end{bmatrix}
= \begin{bmatrix}
A_H + B_H \\
A_V
\end{bmatrix}
\]

(25)
立ち位置の変更

\[D_H = \begin{cases}
0.6 & (-130 \leq \theta_H \leq -90) \\
(0.4/30)(\theta_H + 60) + 1 & (-90 < \theta_H \leq -60) \\
1.0 & (-60 < \theta_H \leq 30) \\
(-0.7/60)(\theta_H - 30) + 1 & (30 < \theta_H \leq 90) \\
0.3 & (90 < \theta_H \leq 130) \\
\end{cases} \] (26)

\[D_v = 1 \] (27)

\[
\begin{bmatrix}
A_H & A_v \\
B_H & B_v
\end{bmatrix} =
\begin{bmatrix}
\gamma \cdot D_H & 1 \\
1 - \gamma \cdot D_H & 0
\end{bmatrix}
\begin{bmatrix}
\theta_H & 0 \\
0 & \theta_v
\end{bmatrix}
\] (28)

\(\theta_H \)は指示方位の水平成分, \(D_H \)は水平方向の分担比を示し, \(A_H \)は指示動作時における水平方向の上肢の回転角, \(B_H \)は胴体のY軸回転角とする. 同様に \(\theta_v \)は指示方位の垂直成分, \(D_v \)は垂直方向の分担比を示し, \(A_v \)は指示動作時における垂直方向の上肢の回転角, \(B_v \)は胴体のX軸の回転角とする. また, 分担比は個人や年齢によって差が大きいため, 本稿では重み \(\gamma \)により調整する.

これにより, 指示方位にしめる胴体と上肢の回転の比率を適切に変化させることができると, 簡易に指示動作動作を生成することができる.

図 4-1 指示方位による上肢と胴体の回転の分担比

4.3 逆運動学による上肢の回転
指差しにより特定の指示対象を指示する場合、指示方位から上腕の関節角を求めることが必要となる。本稿では、上腕・前腕の各関節角は、多関節体の動作を設計する際に一般的に用いられる逆運動学（inverse kinematics、以後 IK）により決定する。IK はエンドエフェクタと呼ばれる人間の手先や足先の 3 次元位置を決定することで、各関節角度を自動的に決定する手法である。

本稿ではエンドエフェクタを右手前腕の先端として IK を解き、上腕と前腕を回転させ指示ベクトルの制御を行う。ただし、指示ベクトルの水平角は上腕の Y 軸回転によって決まり、垂直角は上腕の Z 軸回転と前腕の Z 軸回転の和によって決定されるものとする（図 4-2）。また、指示基準点を肩のローカル座標の原点、指示対象を指差し先の座標とし、指差しベクトルは指示対象上にある、指差しは右手で行なうものとする。

\[
d = \begin{cases}
 \text{const} & (L > L_1 + L_2) \\
 L & (L \leq L_1 + L_2)
\end{cases}
\]

\[
\beta = \cos^{-1}\left(\frac{L_1^2 + d^2 - L_2^2}{2L_1d}\right)
\]

\[
q_1 = \pi / 2 - \theta_v' - \beta
\]

\[
\alpha = \cos^{-1}\left(\frac{L_1^2 + L_2^2 - d^2}{2L_1L_2}\right)
\]

\[
q_2 = \pi - \alpha
\]

q_v'：指示方位から垂直成分を引いた角度

d：指示基準点から指示位置までの距離
L：指示対象と指示基準点の距離
L1：上腕の長さ
L2：前腕の長さ
q1：上腕の Z 軸回転角
q2：前腕の Z 軸回転角

ただし、指示基準点を前腕の先端の座標として、指示基準点から指示動作点に向かうベクトルを指示ベクトルとする。また、指示対象は指示ベクトル上にある、指差しは右手で行なうものとする。
4.4 キー姿勢の補間

指差しなどのジェスチャは、ジェスチャの主要部分を開始するまでの準備期間である準備期（preparation）、ジェスチャの主要部分を構成する期間であるストローク(stroke)、ジェスチャを終了していく期間である消失期(retraction)の3つの位相からなるとされる[36]。

そこで、指差しにおけるこれら3位相の所要時間を T_p, T_s, T_r とし、本稿では動作開始 T_p 後のキーフレームを、前節で求めた上腕・前腕の回転角とし、指示開始位置から関節角をシグモイド状に補間することで指示動作を生成する。補間は以下の式で表される。

$$
Parts(t) = Parts(0) + \left\{ (Parts(T) - Parts(0)) \cdot \frac{(1 + e^{-T})(e^{T} - e^{-2T})}{(e^{T} - e^{-T})(1 + e^{-2T})} \right\}
$$

ただし、T は補間時間、$Parts(t)$ は t 秒後の回転角、$Parts(0)$ は初期姿勢の回転角、$Parts(T)$ は目的の回転角を表し、上記の式はシグモイド関数

$$
f(x) = \frac{1}{1 + e^{-x}}
$$

の $f(0)$ における傾きを 0.25、$f(-1)=0, f(1)=1$ と調整することにより求められる。また、各所要時間はサンプル映像の平均値を用い、T_p は 20[frame]、T_s は 30[frame]、T_r は 15[frame]とした。
第5章 利用者の注意状態の取得

従来の音声認識を用いたインタラクティブドラマシステムにおいて、ＣＧキャラクタの動作の生成は、利用者の発話に応じたあらかじめ作成された単純なモーションを再生することで行なわれていた。しかし、従来システムでは利用者の発話による言語情報のみを扱っており、実際の人間の会話において重要な役割を果たしているとされている、利用者の視線やジェスチャといった視覚的非言語動作を十分にＣＧキャラクタに反映させることができなかった。そのため、従来の手法では、利用者の発話中にあさっての方向を向くなど、利用者の状態を無視したＣＧキャラクタの動作生成が行なわれ、利用者のインタラクティブドラマ環境への没入感を高めることができなかった。

そこで本稿では、利用者の注意状態をＣＧキャラクタの動作生成に取得し反映させることで、ＣＧキャラクタの能動的な志向動作の生成を行ない、インタラクティブドラマ環境への没入感を高めることを行なう。

5.1 利用者の視線方向の検出

会話中の人間は対話者の注意対象を推定しながら、対話者の興味対象について発話を行うなど、その対話者にあった能動的な動作を行うことで円滑な会話を行なっている。そのような注意対象を推定するために、本稿では利用者の注意対象を特定する。

従来から視線による注目度の推定や、オブジェクト選択についての可能性が注目されている。しかし、従来手法では視線検出装置が赤外線光照射による眼球の幾何学的技術を用いたものであったため、非常に高価なものであった。また、画像処理による注視位置の検出も試みられているが、特殊な装置を装着することなく利用者の負担が非常に少ない反面、視線検出精度の向上が問題となっている。

また、視線（眼球の動きの）検出によって注視位置を特定する場合、人は一定を注視する場合、視線を常に細かく移動する（図視微動）ことやサッケードなど、人間の特性を考慮する必要がある。そのため、視線位置の検出にはユーザの視線位置を安定させるための平滑化処理が必要となり、インタラクティブ性（応答性）に対して制約を与えてしまう。

人が視線を移動させる場合、眼球の動きだけではなく頭部の動きを伴って視線を移動させることが知られている。本稿で扱う大型スクリーン上でのインタラクティブ環境では、頭部の動きが主となる視線移動を行う場合が多くみられた。また、頭部の動作はシグモイド状に動作することが知られており、安定した検出が可能となる。そこで、本稿では比較的安価で分解能の高いヘッドトラッキングセンサを用いて、時系列での利用者の頭部の動きを取得し注視位置を推定する。
5.1.1 利用者の注視位置の推定

利用者のスクリーン上の注視位置は、ヘッドトラッキングセンサにより取得された利用者の頭部回転角から、以下の式により取得される（図5.1）。

\[
x_{\text{gaze}} = (W/2 + x_0) + x_1
\]

\[
y_{\text{gaze}} = (H/2 - y_0) - y_1
\]

\[
x_1 = \frac{W_w/2 \times \theta_y}{\theta_{y_{-\text{max}}}}
\]

\[
y_1 = \frac{H_w/2 \times \theta_x}{\theta_{x_{-\text{max}}}}
\]

\[
\theta_{x_{-\text{max}}} = \tan^{-1}\left(\frac{L - H_e}{D}\right)
\]

\[
\theta_{y_{-\text{max}}} = \tan^{-1}\left(\frac{W_w/2 - P}{D}\right)
\]

\[
x_0 = \frac{P \times W_w}{W_s}
\]

\[
y_0 = \frac{H_w \times \{H_e - (L - H_e)\}}{H_s}
\]

ただし、

\(W_s\) : 実世界での画面の横幅
\(H_s\) : 実世界での画面の縦幅
\(W_w\) : ウィンドウの横幅
\(H_w\) : ウィンドウの縦幅
\(L\) : 地面から測った画面の高さ
\(D\) : プレイヤーから画面までの距離
\(H_e\) : 地面から測ったプレーヤーの目の高さ
\(P\) : 画面の中心から見たプレーヤーの左右の立ち位置
\(x_0\) : 初期視点の x 座標
\(y_0\) : 初期視点の y 座標
\(\theta_x\) : x 軸回りの回転角
\(\theta_y\) : y 軸回りの回転角
\(\theta_{x_{-\text{max}}}\) : 上方向への最大アングル
\(\theta_{y_{-\text{max}}}\) : 右方向への最大アングル
\(x_1\) : 頭部の角度によって決まる x 座標の増減
\(y_1\) : 頭部の角度によって決まる y 座標の増減
\(x_{\text{gaze}}\) : 注視位置のスクリーン上の x 座標
注視位置のスクリーン上の y 座標
本稿では上式により求められた利用者の注視位置に最も近いオブジェクトを利用者の注意対象とする。

図 5-1 利用者の注意位置の推定

5.1.2 指示語と注意対象の関係

“これ”や“あの”といった指示語を通じた場合、注視位置が必ずしも注意対象であるとは限らない。そのため本節では発話時の注視位置から注意対象を特定するための手法を提案する。

例えば、A が本を指して「これを取って」と B に指示をする場合を考える。まず A の指さしは「これを取って」という発話と共に使われる。そして A のこの行為は、B が A の行動と本の両方を見ることができる位置にいることを A がわかっていてはじめてこなすことができ、次に B が本のほうを向いて「わかった」と発話することになるが、A は B が本の方向へ正しく向いたことを見て、さらにその発話を聞くことによって、B が理解したことを確認できる。最後に A は指さしをしていた手を引っ込めると、これによって A は B やそこにいるその他の人々に対して、B が A の指示を理解したことを A が確認したということを示すのである。

このように指示語を通じた行動は次の 4 ステップからなりたっている。

1） 相手の志向を確認する
2) 注目物体を確認する
3) 指示語を発する
4) 相手を志向を確認する

本稿では、音声認識に IBM の ViaVoice を用いており、音声認識によるタイムラグを計算した結果 2sec のタイムラグがあることがわかった。そのため、注意対象の推定の履歴をとり、2sec 前の注意対象を利用する。

5.1.3 利用者の注目状態の解釈

目標や行動の決定に関しては、人間は有限時間内で物事に対処するために欲求や感情を利用して物事の価値を判断しているという理論[39][40]がある。これらの理論によると、人間は外部からの入力が欲求を刺激すると感情が変化し、最も強い感情に関する入力や目標へ選択的に注意が向けられ、行動が決定される。また、このような熟考プロセスでは対応できないような迅速な対応を必要とする刺激に対しては、無意識に反応する反射のプロセスも人間は備える。

そのためキャラクタの生成する能動的動作も、利用者の動作の意図を理解し生成することが求められる。そこで、本稿では以下の手法により利用者の注意状況を熟考的プロセスと反射的プロセスの 2 状態に判断・推測し、キャラクタの能動的動作を生成するための条件として利用する。2 状態に分類できない状態は平常状態として認識され、キャラクタの能動的動作生成に直接関係しないものとする。

1) 熟考的プロセス時には利用者の注意が比較的長い停留時間を持つことが多く見られる。そのため、閾値以上の時間停留を行なった場合、利用者は熟考的プロセス状態であると判断する。本稿では 1 秒を閾値とした。
2) 無意識に反応する反射のプロセスの場合、利用者の注意方向は大きく変化する。例えば、仮想環境内の大きな動きや突然音がなったりした場合、利用者は反射的にその方向を見る傾向がある。そのため、本稿では、単位時間あたりの視線移動量が大きい場合、反射的プロセスによる注意であると判断する。

5.2 利用者の動作箇所の特定

我々は実際の対話中に、相手の手をいじるしくさやスッと動かした手の方向を反射的に見ることがある。これらはいずれも、単位時間内に大きく動いた箇所（動作箇所）に反射的に志向を向ける動作である。特に手の動き、頭の動きなど特徴的な部位に注視しやすい傾向がある。そのため、本稿では画像中の肌色を認識し、単位時間あたりの動作量が閾値を超えた箇所を検出する。

動作箇所の検出の手順は以下の通りである。
1) フレーム間差分処理により動作領域を抽出する。本稿では得られたフレーム画像 \(f_i(m,n), f_{i+1}(m,n), \ldots \) をグレースケールに変換し差分を求めた。ただし、\(j=5 \) とした。
\[
S_i(m,n) = |f_{i+j}(m,n) - f_i(m,n)|
\]

2) カメラから得られた画像中の肌色領域を抽出する。肌色領域は色相がほぼ一定であるため、以下の式により色相を求め閾値処理により肌色領域を検出する[41]（図 5-2,5-3）。

21
$H = \cos^{-1}\left\{ \frac{(G - B) + (G - R)}{\sqrt{(G - B)^2 + (G - R)(B - R)}} \right\}$ \hspace{1cm} (44)

3) で求めた肌色領域の重心を求め、おおまかな動作箇所の特定をする。

図 5-2,5-3 中の左上の画像は元画像、右上がフレーム間差分によって得られた動作領域、左下は色相による肌色の検出領域、右下が検出された利用者の動作箇所を表している。

図 5-2 動作箇所の特定⑴

図 5-3 動作箇所の特定⑵
第6章　C Gキャラクタの能動的動作の生成

本章では、C Gキャラクタが能動的に行なう動作として、発話状態では、頭部ジェスチャ、志向の移動、凝視・非凝視動作を扱い、聴取状態では、あいづち、凝視・非凝視動作を扱う。また待機状態では凝視・非凝視動作を扱う（表6-1）。また、このようなC Gキャラクタの能動的な動作に加え、利用者の注意状態によって引き起こされる能動的な志向の移動についての述べる。このように、頭部動作と志向動作と会話状態を考慮することによって、複合的な動作を生成することが可能となり、会話に連動したC Gキャラクタのアニメーションを簡易に生成することができる。

表 6-1 会話状態による能動的動作

<table>
<thead>
<tr>
<th>会話状態</th>
<th>頭部動作</th>
<th>志向動作</th>
</tr>
</thead>
<tbody>
<tr>
<td>発話</td>
<td>○頭部ジェスチャ</td>
<td>○志向の移動</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○凝視・非凝視動作</td>
</tr>
<tr>
<td>聴取</td>
<td>○あいづち</td>
<td>○凝視・非凝視動作</td>
</tr>
<tr>
<td>待機</td>
<td></td>
<td>○凝視・非凝視動作</td>
</tr>
</tbody>
</table>

6.1 頭部動作の生成

6.1.1 発話状態における頭部の動き

発話状態における頭部動作として、肯定を表現するために頷くことや、否定を表現するために首を横に振るなどの頭部ジェスチャがある。これらは表象的動作と呼ばれ、意図的に情報に伝達する動作であり、多くの場合、肯定を表現する単語や否定を表現する単語を伴う。そのため、それらの単語を音声から検出することで動作箇所を特定できる。しかし、典型的な音声認識システムは、書き言葉を読み上げたような朗読音声を前提としているため、自然な発話を受け取ることは一般的に困難である。

そこで、本稿では発話情報として発話のテキスト文を利用し、表6-2の単語が含まれていた場合に対応する動作を生成するものとする。これらは自由対話中の発話を伴う頭部ジェスチャの出現頻度を測定し、話者によらず出現頻度が高かった単語である。

表 6-2 表象的動作を伴う単語

<table>
<thead>
<tr>
<th>検出する単語</th>
<th>表出する動作</th>
</tr>
</thead>
<tbody>
<tr>
<td>うん、そうです、はい</td>
<td>頷き</td>
</tr>
<tr>
<td>いいえ、ちがいます</td>
<td>頭を横に振る</td>
</tr>
</tbody>
</table>
6.1.2 聴取状態における頭部の動き

聴取状態では、頷くという動作が多く表出されるとされ、特に、相手の発話内容に対し首を振ってうなずくあいづちの頻度が最も多い。従来からあいづちに関する研究は多く行われ、発話の区切りに多く表出する動作であることが分かっている[42]。また、発話の音韻を分析することで、発話内容の把握という高度な処理を経ずに模模できる時も示されている[4]。そこで、仮想俳優が聴取状態である場合、発話者の発話末であいづち動作を生成する。

図 6-1 うなずきの生成

6.1.3 頭部動作の表出度

発話者の頭部動作の表出度（頭部動作の大きさの度合い）は、心理状態やそれをどの程度表出するかという意図であり、これらは発話の強弱と正の相関があると考えられる。また、音声の感情を特徴付ける要素は音律であるとされ、音律は、ピッチ構造、振幅構造、時間構造の3つの概念から成っている[43]。本稿では発話の強弱を音声の振幅構造を用い、以下に示す短時間エネルギーを考えることで求める[44]。

\[E(i) = \sum_{n=0}^{N-1} \{W(n)S(i-n)\}^2 \]

(45)

\[W(n) = 0.54 - 0.46 \cos(\frac{2n\pi}{N-1}) \]

(46)

ただし、音声信号の分析は、音声信号に対し、ほぼ定常と見なせる区間の長さを有する時
間窓(フレーム)を，一定の周期(フレーム周期)でずらしながら乗じて波形を切り出し，それぞれのフレームについて分析を行うオーバーラップ分析により行った．また，S: 音声信号，W: Hamming窓，N: フレーム内の信号数とし，サンプリング周波数は11,025Hz，量子化ビットは16bit，フレーム長は30ms，フレーム周期は10ms とした．本稿では，頭部動作の表出度を，中，小の3段階に分けてそれに対応する動作をあらかじめ作成し，発話の強弱を閾値処理することにより生成する動作を選択する．頷く動作に関しては頷く深さ（小さく頷く，大幅度頷く），また，首を横に振る動作に関しては横に振る大きさ（小さく首を振る，大きく首を振る）を変化させることで生成した．

6.2 能動的な志向の移動の生成

6.2.1 発話状態における眼球の動き

発話状態における眼球の動きとして，思考中に頭上を見上げたり，指示対象に視線をうつしたりするといった例示的動作を表現する動作がある．

思考中であることを表現する動作は，「えーと」などの間投詞や「たしかー」などの音節を引き伸ばす言い淀みを伴い，一般的に平坦なイントネーションになる傾向があることがわかっている[45]．そこで本稿ではCGキャラクタの発話音声を解析しビッチ（周波数波形）が平坦になる箇所を探索し，思考中を表現する動作を行う．人間の生理解像として思考中は頭上を見上げることや，下を向くことが多く見られるため，本稿ではこの2つの動作を，思考中を表現する動作として用いる．

また，指示対象に視線を向ける場合，「あれ」や「あっち」などの指示語を伴うことが実際の会話中で多く見られる．本稿では，発話テキスト中の指示語をパターンマッチングすることで，指示対象に視線を向ける動作を生成する．パターンマッチングに使用した指示語は，「あれ」「あっち」「これ」「こっち」「それ」「そっち」である．また，パターンマッチングの簡略化のために本稿では上記以外の指示語を用いないものとする．ただし，発話情報だけで指示対象の3次元位置がわからないため，発話テキスト中の指示語にあらかじめ指示対象の3次元座標の情報を注釈する.

6.2.2 凝視・非凝視動作

本稿では，すべての会話状態において志向動作生成モデルが自律的に生成する動作として，凝視・非凝視動作を考える．凝視とは対話者に志向を向けている状態を示すものとし，Sgとする．また，対話者から志向をそらしている状態を非凝視状態とし，Saとする．

本稿では，SgとSaの2状態を考え，凝視量（R）と凝視持続時間（L[ms]）の2変数を用いることで凝視・非凝視動作を制御する[46]．Rは会話時間に対する相手を凝視していた時間の割合，Lは1回の凝視が持続する時間とする．

変数R, Lに従った眼球移動を生成するために2状態(Sg, Sa)の確率遷移モデルを考える．SaからSgに遷移する確率をPag，SgからSaに遷移する確率をPgg，SgからSaに遷移する確率をPga, SaからSaに遷移する確率をPaaと定義すると各状態遷移確率は以下のよう

\[
P_{ag} = P_{gg} = R
\]

(47)
また、状態が S_g に遷移してから次に遷移するまでの平均時間を L に一致させるために、状態遷移が発生する周期 $t[\text{ms}]$ を以下の式によって定義する。

$$t = (1 - R) \times L$$

ただし、本稿では、$R=0.5$、$L=1000[\text{ms}]$ を凝視量、凝視時間の標準値とする。また、$R=1.0$ が常に相手を凝視することを表し、$R=0.0$ が常に非凝視をすることを表す。さらに、5.2 によって得られた利用者の肌色領域の中のもっとも上の肌色領域を利用者の顔であるとみなし、凝視時の座標とする。

6.2.3 会話状態に連動した凝視・非凝視動作

社会心理学の分野では、会話状態により表出される動作が変化するとされ、Argyle の実験によると、
(a) 聴取状態の方が凝視する頻度が多い
(b) 聴取状態の方が相手を凝視する時間が長い
(c) 発話者は話の区切りや話の終了時に凝視することが多い

ということが明らかになっている[11]。しかし、6.2.2 で述べた各変数の標準値は、会話状態を考慮していないため、(a)～(c)の条件を十分に満たすことができない。そのため、本稿では発話音声により得られた会話状態を利用し、各変数を動的に変更し、会話に連動した凝視・非凝視動作を行なう。

本稿では、条件(a)を反映させるために仮想俳優が聴取状態である場合に凝視量 R を増加させ、条件(b)を反映させるために仮想俳優が聴取状態である場合に凝視持続時間 L を増加させる。さらに条件(c)を反映させるために、仮想俳優が発話状態である場合に発話開始部と発話終了部における凝視量を増加させる。これらをまとめたものを表 6-3 に示す。ただし、R は標準状態の凝視量、L は標準状態の凝視持続時間を表し、$R+$、$L+$ はそれぞれ増加時の凝視量、凝視持続時間を表す。本稿では、R を 0.5、L を 1000、R+を 0.75、L+を 1500 とした。これにより、会話状態を考慮した凝視・非凝視動作が可能となり、無意識的に視線を変化させる。
せる身体操作や、会話の始めに視線を交わす規制的動作を表現することができる。

表 6-3 視線パラメータの動的設定

<table>
<thead>
<tr>
<th>状態</th>
<th>凝視量</th>
<th>凝視持続時間 [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>待機状態</td>
<td>R = 0.5</td>
<td>L = 1000</td>
</tr>
<tr>
<td>発話状態</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>発話状態の開始部</td>
<td>R+ = 0.75</td>
<td>L</td>
</tr>
<tr>
<td>発話状態の終了部</td>
<td>R+</td>
<td>L</td>
</tr>
<tr>
<td>聴取状態</td>
<td>R+</td>
<td>L+ = 1500</td>
</tr>
</tbody>
</table>

6.3 インタラクティブな志向の移動

対話中に人間は対話している相手をモニタする機能があることが指摘されている[8]。対話中に相手を見ることが基本的なことであり、相手が移動する場合はその移動先を目や頭部で追うことや、対話者の視線の方向に注意をむけるなど、誰もが特別に意識することなく行なう反射的行為である。本節ではそのような反射的な志向動作をCGキャラクタが対話者（利用者）の注意動作によってインタラクティブに生成することを行なう。

6.3.1 利用者の注意位置による志向の制御

我々は、対話中常に相手の目を見続けていないのではなく、対話中一定の間隔で目を逸らしたり、相手の凝視時間が長い場合や凝視回数が頻繁な場合はつい目を逸らしたりすることが多い。そのため、CGキャラクタが利用者の凝視とは無関係な視線移動を行なうことは不自然である。そこで、利用者のCGキャラクタへの凝視量によってCGキャラクタの視線の制御を行う。

本稿では、6.2 で述べた手法を用いてCGキャラクタの志向の移動を自動的に生成している。その際に用いる相手を見る確率値であるパラメータ R（凝視量）、非凝視時に志向を向けられる志向箇所を利用者の注意位置を元に動的に変更することで、利用者を意識したCGキャラクタの志向動作を生成する。

[47]によると二者間での相互の顔面への凝視する相互注視（mutual gaze）は約1秒であるという結果が得られている。つまり必要以上の凝視は利用者に違和感を覚えるため適度に視線を回避させる必要がある。そのため、

1）ずっと目を合わせていたら志向を利用者からそれらす
2）利用者の視線方向を気にする（共同注視）

という二つの志向動作を実装する。1）の志向の回避には 6.2 で述べた凝視・非凝視のパラメータ R（凝視量）を制御する。本稿では、利用者の注意位置がCGキャラクタの顔付近に1秒以上停留した場合、次の1秒間は 6.2 で述べた R = 0.1, L = 500ms とすることで視線を回避する確率を高くする。また、2）の共同注視は 5.1 で得られた利用者の注意対象の座標を 6.2 で述べた非凝視時の志向対象の座標とすることで、利用者の視線方向を気にするような共同注視動作を生成する。ただし、常に利用者の注視箇所を非凝視時の志向対象とした場合、常に利用者の注視箇所に志向をむける確率が高くなり非常に不自然であるため、共同注視は利用者が 5.1.3 で述べた熟考プロセスである場合にのみおこるものとし、単位時間内の移動量が大

27
きい反射的プロセス時の利用者の注視箇所は非凝視時の志向対象としないものとする。

6.3.2 動作箇所への注目

我々は実際の対話中に、相手の頭をいじるしくさやスッと動かした手の方向を反射的に見ることがある。これらはいずれも、単位時間内で大きく動いた箇所（動作箇所）に反射的に志向を向ける動作である。そこで、利用者がある部分を大きく動かした場合、C Gキャラクタがその動作箇所に注目するという行動を生成する。

利用者の動作箇所は5.2で述べた手法を用いて検出し、検出した利用者の方向を6.3.1でと同様に非凝視時の志向対象とし、凝視・非凝視動作を生成する。ただし、利用者の急激な動作に反応する志向動作であるため、C Gキャラクタはできる限り早く利用者の動作箇所に志向を向ける必要がある。そのため、本稿では凝視時の志向対象の座標を利用者の顔ではなく、利用者の動作箇所に一時的に変更することで、C Gキャラクタの反射的な志向移動を実現する（図6-3）。

図6-3 動作箇所の検出による志向動作の動的変更

6.3.3 発話の大小による反応

人には音がする方向を向く性質がある。それは発話内容にはあまり関係なく、話し声の大きさが強く関係している。例えば、会話中に話し相手が急に大きい声を出した場合、相手の方向に志向を向ける。このように人間には発話内容によらず、音声の大小による反射的な反応が存在する。しかし、本稿で用いている音声解析を行う場合、認識までのタイムラグが生じてしまうため、認識過程において反射的な動作を生成することが困難である。そこで、音声の大小によってC Gキャラクタの志向動作を生成する。本手法では、音声の大きさに閾値を設け、ある閾値を超えた場合利用者が発話しているものとみなし、利用者に志向を向ける動作を生成する。

また、自分から何かを探す主体的な動作である振り向きは、本能的なものと比べてあまり急ぐ必要がないので、特殊な状況下でないと余裕をもって行なわれる。しかし、本節のような声の大小に反応するような反射的な動作はとても素早い動作となる。そのため、志向の移動の際振り向く速さであるパラメータTgの値を標準値よりも短くする。
第7章 評価実験

7.1 志向の移動モデルの検証

7.1.1 対話アニメーションの生成

本稿で述べた志向の移動モデルの有効性を検証するために、「街中で男性を探す」というストーリー（図 7-1）のもと発話音声を利用し、CGキャラクタ同士の対話アニメーションを生成し、アンケートにより評価を行った。ただし、リップシンクはテキスト中の母音を解析し、あらかじめ用意した母音の口形状をモーフィングにより遷移することで行い、瞬きは一定時間ごとに生成した。また、アニメーションの生成は OpenGL 上で実装を行った。また、実際の人間の瞬きと凝視は相反する反応であり、負の相関関係が生じるが、今回の実験では考慮しない。

実験では、
① リップシンクと瞬き以外何も適用しない映像
② 志向の移動は、胴体、頭部の動きは生じず、眼球の動きだけで表現される。また、頭部の動きに伴う眼球の前庭動眼反射も生じない。
③ ②に3章で述べた動作間の協調機構を考慮した映像
の3通りの映像を被験者9名に提示し、①-②、①-③、②-③のそれぞれについて一対比較を行ない、どちらが自然な対話アニメーションであるかの評価を行った。ただし、6章で述べた各パラメータは、常に凝視をする R=1.0 と、常に非凝視をする R=0、標準値 R=0.5 を均等に内挿して得られる 0.75 を R+とし、経験的に L+を 1500 とした。

回答方法は図 7-2 に示すアニメーションが自然に見えるかどうかの評価項目が、どちらの映像にどの程度合致するかを判断してマークするものである。また、評価項目ごとに点数を算出し、すべての点数を合計したものをそれぞれの映像の得点とした（図 7-3）。ただし、点数は、「非常に①」だった場合、映像①にのみ 2 点を加え、「どちらかというと②」だった場合は、映像②にのみ 1 点を加え、「どちらでもない」場合には点数を加えないという方法で計算した。

図 7-3 に示した結果より、本稿で提案した手法を用いた映像③が最も自然なアニメーションであると感じていることが分かった。

映像③の頭部と眼球の回転角の遷移を図 7-4 に、会話と頭部動作のタイミングチャートを図 7-5 に示す。また、図 7-5 中の A〜E の各点における女性（Actor2）の志向動作の生成結果を図 7-6, 7-7 に示す。図 7-5 は映像②の生成結果であり、図 7-6 は映像③の生成結果である。C 点においての視線移動を比較すると、図 7-6・C では眼球のみが回転して指示方向を向
ているが，図 7-7-C では頭部も回転して指示方向を向いていることがわかる．図 7-8 に異なる角度からの映像③を示す。

A：こんにちは
B：はい
A：この辺で長いコートを着た男性を見かけませんか？
B：さぁ，見てませんけど
A：そうですか
B：あの角を曲がったところに店があるので，聞いてみたらどうでしょうか？
A：あっちですか？
B：そうです
A：ありがとうございます
B：どういたしまして

図 7-1 2 人対話の評価実験用の会話文

図 7-2 アンケート用紙
図 7-3 アンケート結果

図 7-4 頭部と眼球の回転角度（映像③，女性）

図 7-5 会話と頭部動作
7.1.2 複数人対話の生成

本稿で述べた手法の応用例として、3名のCGキャラクタを用いたアニメーション生成が可能かどうかの検討を行なった。複数人対話では、誰に対して発話をしているのか、どれだけ会話を注意を払っているのかを表現する手段として視線の移動が非常に重要になるとされている[6]。

そこで本稿では、会話状態によって凝視時の注視位置を次のように設定し、アニメーション生成を行なった。

- 発話状態においては、直前に発話をしていたCGキャラクタを向くことを凝視とする。
- 聴取状態においては、発話状態にあるCGキャラクタを向くことを凝視とする。
- 待機状態においては、いずれかのCGキャラクタを向くことを凝視とする。

実験では7.1.1で用いた会話文(図7-9)を利用し、図7-4中の発話③と発話⑤を右側男性の発話とした（図7-10〜7-12）。図7-10は左側男性の視点から見た女性を示し、図7-11は右側男性の視点から見た女性を示している。図7-10〜7-12中のB、D、Eにおいて適切な仮想俳優に視線を向けているため、どちらの仮想俳優に対して発話をしているのかが認識できる。このことから、本手法が複数人対話の生成に関して有効であることがわかる。
A:こんにちは
B:はい
C:この辺で長いコートを着た男性を見かけませんでしたか?
B:あぁ、見ませんけど
C:そうですか
B:あの角を曲がったところに店があるので、聞いてみたらどうでしょうか?
A:あっちですか?
B:そうです
A:ありがとうございました
B:どういたしまして

図 7-9 複数人対話の評価実験用の会話文

図 7-10 複数人対話（左側男性の視点）

図 7-11 複数人対話（右側男性の視点）

図 7-12 複数人対話
7.2 能動的志向動作の生成

7.2.1 インタラクティブドラマへの適用

利用者の注意情報を考慮することで、没入感を伴ったC Gキャラクタの動作生成が可能であるかどうかの評価を行うため、本稿で提案した手法をインタラクティブドラマに適用した。実験では図7-13に示す「中世の街中で昼食をとる場所を探す」というシーンを設定した会話文を利用者・C Gキャラクタが発話し、利用者の注意状態に基づいてインタラクティブにC Gキャラクタの志向動作を生成した。

①Character : Will you take lunch soon?
②User : It’s good.
③Character : Then, let’s search for restaurants while a little walking.
④User : O.K.
⑤User : Do you know some good eating places?
⑥Character : Yes, there is my favorite restaurant over there.
⑦Character : Look, it’s that.
⑧Character : It’s not the left, but the right.
⑨User : But, it seems that we can eat cheaply at the left restaurant now.
⑩Character : Really? Then, shall we enter there?
⑪User : Yes, let’s.

図7-13 インタラクティブドラマ用の会話文

図7-14 インタラクティブドラマにおける実験結果
図 7-14 に生成された映像を示す。図 7-14-A は会話文①における動作であり、凝視・非凝視動作により能動的に利用者に志向を向けている状態を表している。図 7-14-B は会話文①において利用者の CG キャラクタへの注目が長かったため、CG キャラクタが利用者から志向をそらした状態を表している。図 7-14-C は会話文⑤において、利用者のからの音声の入力に反応して利用者の方向を向いている状態であり、複雑な音声言語解析を行う妨げに能動的な反応を行なうことができていることを示している。図 7-14-D は会話文⑦の that に対応した指示対象を指示しているシーンであり、任意の位置からの指差し動作が可能であることを示している。図 7-14-E は会話文⑧における、利用者の注意方向への志向動作を示している。

これらのことから、利用者の注意状態によって多様な能動的志向動作が生成されていることがわかる。数人の被験者に CG キャラクタが利用者の状態を認識しているように感じられるかという質問をしたところ、「非常に見られているような感じがする」という回答が多く得られ、インタラクティブドラマ環境への浸入感を高めることができていることが確認できた。

7.2.2 複数人対話の生成

利用者の注意動作を考慮した複数人対話アニメーション生成の有効性を確かめるために 2 名の CG キャラクタと利用者を用いた、インタラクティブなアニメーション生成が可能かどうかの検討を行なった。複数人対話では、誰に対して発話をしているのか、どれだけ会話に注意を払っているのかを表現する手段として視線の移動が非常に重要になるとされている [6]。

そこで本稿では、7.1.2 同様、会話状態によって凝視時の注視位置を次のように設定し、アニメーション生成を行なった。

- 発話状態においては、直前に発話をしていた人物を向くことを凝視とする。
- 聴取状態においては、発話状態にある人物を向くことを凝視とする。
- 待機状態においては、いずれかの人物を向くことを凝視とする。

実験では図 7-15 に示す「中世の街で宿泊をする場所を探す」というシーンを設定した会話文を利用者・CG キャラクタが発話し、利用者の注意状態に基づいてインタラクティブに CG キャラクタの志向動作を生成した。
①User : すみません。
②Character 2 : はい、何ですか？
③User : この辺りに宿はありますか？
④Character 2 : それならここから少し西に行くとあるわよ。
⑤Character 1 : でも、あそこの宿は高くて有名よ。
⑥Character 2 : そうねぇ。
⑦User : そうですか。あいにくほとんどお金は持ち合わせていないのです。
⑧Character 1 : そうだわ、それなら寺院に泊めてもらえばいいのよ。
⑨Character 2 : それは良い考えね。寺院ならきっと困っている人を助けてくれるはずよ。
⑩User : 寺院はどこにありますか？
⑪Character 1 : すぐそこの建物よ。
⑫User : ありがとうございました。

図 7-15 利用者を含む複数人対話の会話文

図 7-16 複数人対話における実験結果

図 7-16 に生成された映像を示す。図 7-16-A は会話文①の前の利用者が話しかける以前の動作であり、利用者に志向を全く向けていない。図 7-16-B は会話文①において利用者が発話をしたために利用者への志向が生成されたところである。図 7-16-C は会話文④において、CG キャラクタ2（白いドレスの女性）による指示動作の生成と、それにともなった指示方向への CG キャラクタ1（緑のドレスの女性）の志向が生成されたところである。図 7-16-D は会話文⑦において利用者が CG キャラクタ2（白いドレスの女性）を凝視していた時間が
長かったために，CG キャラクタ 2（白いドレスの女性）が視線をそらしたところである．図 7-16-E は会話文⑦のあとに発話のない状態がつづいたため，利用者の注意方向（利用者が奥の建物に注意を向けていた）に CG キャラクタが志向を向けた様子である．図 7-16-F は会話文⑨において，現在話している CG キャラクタ 2（白いドレスの女性）の方を，CG キャラクタ 1（緑のドレスの女性）が志向を向けている状態である．

図 7-A、B、F において適切な人物に視線を向けているため，どちらの人物に対して発話をしているのかが認識できる．このことから，本手法が複数人対話の生成に関して有効であることがわかる．また，インタラクティブドラマへの適用と同様に複数人対話においても利用者の注意情報が反映された能動的志向動作が生成されていることがわかる．
第8章 まとめ

本稿では、利用者のインタラクティブドラマシステムへの没入感を高めることを目的とし、利用者の注意状態を反映した志向動作の生成について述べた。また、志向動作をパラメータによって制御するために、胴体、頭部と眼球の動的分担機構を提案した。さらに、志向動作の生成のモジュールが利用者とCGキャラクタ間の会話状態を共有することにより、会話に連動した多様な動作を生成する手法を提案した。

実験により、会話状況にあった志向動作が生成され、様々な志向の移動のパターンが生成されることを確認した。また、頭部と眼球とが独立に動作するのではなく、頭部と眼球とが協調し視線移動を行うなど、協調的な動作が生成されていることを確認した。

本稿では志向動作の生成手法についてのみに焦点を当て評価を行ったが、より没入感の得られる自然な会話シーンを生成するために、同じ会話状況下で実際の人間の会話シーンと定量的に比較し、足りない要素を明確化するなど評価手法に関しても検討することが必要である。また、本稿では、簡易なパラメータによる志向動作の生成に焦点を当てているために、頭部と眼球それぞれの動作を限定して、簡略化した動作生成を行った。今後、より自然な会話シーンを生成するために、発話に伴う頭部のゆれや、特定の移動物体を追跡する視線移動など、頭部・眼球動作などの志向動作の種類を増やすことが考えられる。

本手法では音声と発話テキスト文を入力としているため、それらからは会話中の心理状況を取得することが困難である。そのため、不安げにうつむく、せわしく目を動かすなど、会話シーンにあった心理状況を表現する頭部・眼球動作の生成をどのようにして生成するかについても今後検討を行う予定である。
謝辞

本論文を作成するにあたって懇切に御指導して下さった、本学システム情報工学研究科星野准一講師に深く感謝致します。また、様々な知識・助言を与えて下さった本学システム情報工学研究科岩田洋男教授、矢野博明講師に感謝致します。

また研究を進めるにあたって数々の助言を与えて下さった、エンタテインメントコンピューティング研究室の皆様に感謝致します。
参考文献

[33] 田中宏一, 和田俊和, 松山隆司:3次元人体形状計測に基づく指差し動作の解析,情報処理学会研究会資料, CVIM-137-017, 2002.5
[38] R.J.K. Jacob, "What you look at is what you get: Eye movement-based interaction te-